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Cognitive composites are weighted sums of component assessments. For example, the Preclinical Alzheimer’s Cognitive Composite (PACC)
(Donohue et al 2014) is a weighted sum of four components: 

1. Free and Cued Selective Reminding Test (FCSRT)
2. Logical Memory Paragraph Recall
3. Mini Mental State Exam (MMSE)
4. Digit Symbol Substitution Test. 

The components were chosen, based on a broad literature review, for their sensitivity to decline in preclinical and prodromal stages of the disease. In its 
current implementation, PACC components are weighted equally, with the aim of giving more than half of the total weight to episodic memory 
(components 1, 2 and part of 3, but also giving importance to orientation and language (parts of component 3) and executive function (component 4). 

The component weights can be “optimized” according to any reasonable criterion, e.g. to maximize power or to minimize the smallest detectable effect 
size. All optimization algorithms are “greedy” – their solution is optimal for the given training set but may not perform well on other independent datasets. 
Cross-validation can be used to assess this out-of-sample performance. 

METHODS
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Summary
• There is tradeoff between optimization and face validity such that optimization should only be considered if there is a convincing rationale.
• Component weight optimization does not yield valid improvements in sensitivity of PACC to detect treatment effects. We did not explore item level 

optimization, which would be even more costly to face validity.
• Both MMSE and Digit Symbol Substitution were consistently down-weighted by optimization. However, down-weighting them did not reliably improve 

composite performance out-of-sample. MMSE has good face validity as a global assessment and has demonstrated sensitivity to preclinical decline 
(Amieva, et al 2008). Digit Symbol Substitution has good face validity as a measure of executive function. We do not find adequate justification to omit 
either the MMSE nor Digit Symbol Substitution from the PACC.

Limitations of external validation:
• It is expensive to conduct additional validation studies.
• Existing data is never ideally matched with respect to the study populations or assessments.

Limitations of cross-validation:
• Mere simulation of real-world out-of-sample replication.
• Sub-samples may not be of sufficient size to generate reliable weight estimates.

Datasets. We explore composite optimization in cohorts with normal cognition from four studies: (1) North American Alzheimer’s Disease Neuroimaging 
Initiative (NA-ADNI), (2) Japanese-ADNI (J-ADNI), (3) Australian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing (AIBL), and (4) 
Alzheimer’s Disease Cooperative Study Prevention Instrument (ADCS-PI). For each dataset we consider a “target” population (e.g. A𝛽+, APOE𝜀4+, or 
Clinical Dementia Rating Global [CDR-G] progressors) and a complementary “reference” population (e.g. A𝛽-, APOE𝜀4-, or CDR-G stable) (Figure 1). 
Table 1 summarizes the composite components available in the four datasets and the target/reference groups used.

Composite Construction. The PACC is the sum of the four component z-scores, defined:
𝑧%& =

𝑦%& 	− 𝑦%+
𝜎%+

for component j (j	=1,…,4) at time t, where 𝜎j0 is the standard deviation of the j	th component at baseline. We considered optimized versions of the PACC 
which are weighted sums:

𝑌& 𝐰 = 𝑧2&𝑤2 + 𝑧5&𝑤5 + 𝑧6&𝑤6 + 𝑧7&𝑤7
where w=(w1,w2,w3,w4)	is the weight vector (wj≥	0 andw1 +	w2 +	w3 +	w4=1).

Optimization. We derive optimized weights using two approaches:
1. Logistic regression: Weights are derived from a logistic regression to discriminate the target (e.g. A𝛽+) from the reference population (e.g. A𝛽-) 

based on three-year component change scores, and
2. Minimize 𝛿: Weights are derived to minimize the detectable treatment effect (𝛿) as a percentage of the group difference in change from baseline 

between the target and reference populations. These weight are found by submitting the sample size formula to a numerical optimization routine 
(Nelder & Mead 1965).

External validation. To explore optimized weighting of the PACC, we first attempted a simple external validation of the weights derived from AIBL. 
Power calculations are conducted using the AIBL-optimized composite applied to the other datasets, and the resulting minimum detectable effect size is 
reported for each data set and optimization method. 

Cross-validation. Figure 2 provides a basic schematic of cross-validation. With each fold of the cross-validation, we derive the optimal weights using 
the training set, then test its performance (minimum detectable 𝛿) on the validation set. Due to small sample sizes, we used a relatively small number of 
folds (3). We used repeated cross-validation (Burman 1989), which is akin to applying the bootstrap to cross-validation. We repeat each 3-fold cross-
validation 5 times (“5x3 cross-validation”), yielding a total of 15 estimates of w	and associated 𝛿 per data set. We graphically summarize the median and 
range of these estimates by data set, as well as the pooled medians.

Power calculations assume a Mixed Model of Repeated Measures to estimate treatment effect at 36 months, 6-month visit intervals, 500 participants per 
group, 30% attrition, 5% 𝛼, and 80% power. 
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Figure 2. With k-fold cross-validation we split the 
sample up into k non-overlapping sub-samples of 
size n/k	which take turns as the validation set 
(red), leaving the remaining sample (blue) for 
training set. In our case, weights are optimized on 
each training set and out-of-sample performance 
(minimum detectable 𝛿) is assessed on validation 
sets.
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The ADNI battery does not include the FCSRT. In place of
the FCRST, we use Delayed Word Recall from the Alzheimer’s
Disease Assessment Scale–Cognitive Subscale36 to construct
an approximation of the proposed ADCS-PACC. To more closely
reflect the inclusion criteria for the A4 study, we exclude ADNI
participants with Delayed Recall scores greater than 15 on the
Logical Memory IIa subtest.

Australian Imaging, Biomarkers, and Lifestyle Flagship Study
of Ageing
The Australian Imaging, Biomarkers, and Lifestyle Flagship
Study of Ageing (AIBL) is a longitudinal biomarker cohort
study,37 similar to ADNI. We used the same PiB threshold to
determine Aβ positivity (PiB SUVR > 1.5). The AIBL battery also
does not include the FCSRT, so we use delayed recall from List
A of the California Verbal Learning Test38 to construct the com-
posite in the analysis of AIBL data.

ADCS Prevention Instrument Study
The ADCS Prevention Instrument (ADCS-PI) study was a 4-year
study of cognitively normal individuals 75 years of age or older
to assess potential outcome measures for future prevention
studies.16,30 The ADCS-PI study used New York University
Paragraphs,39 instead of Logical Memory, and the Modified Mini-
Mental State Examination,40 instead of the MMSE. The study
data do not include CSF or PET measures of amyloid level. There-
fore, as a proxy for Aβ status, we use the presence of at least 1
APOE-ε4 allele, although this is less predictive of decline than
Aβ markers.26 We also compare participants who were CDR-G
stable with those who were CDR-G progressors. This last group
definition is based on postbaseline progression data and is bound
to demonstrate larger group differences than the other analy-
ses based on baseline covariates only. However, this analysis of
postbaseline progression puts the scale of the composite in per-
spective relative to clinically meaningful CDR-G change.

Figure. MMRM Estimates of Composite Change From Baseline in the ADCS-PACC
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The models assume heterogeneous compound symmetric covariance structure,
which allows for a different variance per visit and for a single correlation
parameter. Age and composite score at baseline are included as covariates. The
dashed line indicates the hypothesized minimum treatment benefit that can be
detected with 80% power, a 5% α level, and the indicated sample size and
attrition. The shaded regions depict 95% CIs. Group differences are significant

at P < .05. ADCS-PACC indicates Alzheimer’s Disease Cooperative Study
Preclinical Alzheimer Cognitive Composite; AIBL, Australian Imaging,
Biomarkers, and Lifestyle Flagship Study of Ageing; CDR-G, global Clinical
Dementia Rating; MMRM, mixed model of repeated measures; and
PI, Prevention Instrument.
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Figure 1. The PACC in AIBL. A𝛽 group profiles 
and the smallest detectable effect, 𝛿 (green), 
based on AIBL data. The sample size calculation is 
based on MMRM and assumes 80% power, 5% 
two-sided, 3 year trial, n=500 per group, and 30% 
attrition (Donohue et al 2014). 

Figure 3. Optimized composite weights across the cross-validation subsamples. Medians (dots) 
and range (vertical lines) of the logistic-optimized (left) and minimum detectable 𝛿 (right) by data set 
(colors) across the 15 repeated cross-validation subsamples (see color legend in Figure 4). 
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Figure 4. Minimum detectable 𝛿 attained out-of-sample. Medians (dots) and range (vertical lines) 
of the minimum detectable 𝛿 attained out-of-sample using each of the 3 indicated weighting methods.

Study
(grouping)

A4
(Amyloid PET)

AIBL
(Amyloid PET)

NA-ADNI
(PET/CSF)

J-ADNI
(Amyloid PET)

ADCS-PI
(APOE𝜀4)                 (CDR-G)

Component z1 MMSE MMSE (6%) MMSE MMSE 3MSE 3MSE

Component z2 FCSRT CVLT (55%) ADAS-Cog ADAS-Cog FCSRT FCSRT

Component z3 LM LM (35%) LM LM NYU NYU

Component z3 Digit Digit (5%) Digit Digit Digit Digit

𝛿 using equal weights 33% 42% (year 2) 35% 48% 14%

𝛿 using logistic regression weights 27%* ☨ 54% 95% 15%

Table 1. External validation of weights optimized using AIBL. To explore optimized weighting of 
the PACC, we fit AIBL data to a logistic model of A𝛽+ status with month 36 component change z-
scores as covariates. The regression coefficients from this model provide a weighting tuned to 
discriminate A𝛽+ status. The resulting weights are in bold and parentheses in the AIBL column, and 
the resulting minimum detectable 𝛿 is summarized in the bottom row. 

*  The minimum possible (numerically optimized) 𝛿 was 25%, but this required weighting Digit Symbol 
in the wrong direction.
☨ The logistic optimized PACC was not significantly different at any visit in ADNI, while the original 
was significant only at year 2.


