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BACKGROUND RESULTS

Cognitive composites are weighted sums of component assessments. For example, the Preclinical Alzheimer’s Cognitive Composite (PACC)
(Donohue et al 2014) is a weighted sum of four components:

1. Free and Cued Selective Reminding Test (FCSRT)

2. Logical Memory Paragraph Recall

3. Mini Mental State Exam (MMSE)

4. Digit Symbol Substitution Test.
The components were chosen, based on a broad literature review, for their sensitivity to decline in preclinical and prodromal stages of the disease. In its

current implementation, PACC components are weighted equally, with the aim of giving more than half of the total weight to episodic memory
(components 1, 2 and part of 3, but also giving importance to orientation and language (parts of component 3) and executive function (component 4).

The component weights can be “optimized” according to any reasonable criterion, e.g. to maximize power or to minimize the smallest detectable effect
size. All optimization algorithms are “greedy” — their solution is optimal for the given training set but may not perform well on other independent datasets.
Cross-validation can be used to assess this out-of-sample performance.

METHODS

Datasets. \We explore composite optimization in cohorts with normal cognition from four studies: (1) North American Alzheimer’s Disease Neuroimaging
Initiative (NA-ADNI), (2) Japanese-ADNI (J-ADNI), (3) Australian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing (AIBL), and (4)
Alzheimer’'s Disease Cooperative Study Prevention Instrument (ADCS-PI). For each dataset we consider a “target” population (e.g. Ag+, APOEe4+, or
Clinical Dementia Rating Global [CDR-G] progressors) and a complementary “reference” population (e.g. Ag-, APOEe&4-, or CDR-G stable) (Figure 1).
Table 1 summarizes the composite components available in the four datasets and the target/reference groups used.

AIBL by AB Status

Figure 1. The PACC in AIBL. AB group profiles
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Composite Construction. The PACC is the sum of the four component zscores, defined:
Yit — Yjo
z = j — j
jo
for component j (j=1,...,4) at time t, where g, is the standard deviation of the jt component at baseline. We considered optimized versions of the PACC
which are weighted sums:
Y (W) = zyewy + ZpeW, + Z3cW3 + Zae Wy
where w=(wy,w,, w3, w,) is the weight vector (w;> 0 and w; + w;, + w3 + w,=1).

Optimization. We derive optimized weights using two approaches:

1. Logistic regression: Weights are derived from a logistic regression to discriminate the target (e.g. Ag+) from the reference population (e.g. AS-)
based on three-year component change scores, and

2. Minimize 6: Weights are derived to minimize the detectable treatment effect (§) as a percentage of the group difference in change from baseline
between the target and reference populations. These weight are found by submitting the sample size formula to a numerical optimization routine
(Nelder & Mead 1965).

External validation. To explore optimized weighting of the PACC, we first attempted a simple external validation of the weights derived from AIBL.
Power calculations are conducted using the AIBL-optimized composite applied to the other datasets, and the resulting minimum detectable effect size is
reported for each data set and optimization method.

Cross-validation. Figure 2 provides a basic schematic of cross-validation. With each fold of the cross-validation, we derive the optimal weights using
the training set, then test its performance (minimum detectable §) on the validation set. Due to small sample sizes, we used a relatively small number of
folds (3). We used repeated cross-validation (Burman 1989), which is akin to applying the bootstrap to cross-validation. We repeat each 3-fold cross-
validation 5 times (“5x3 cross-validation”), yielding a total of 15 estimates of w and associated § per data set. We graphically summarize the median and
range of these estimates by data set, as well as the pooled medians.

Power calculations assume a Mixed Model of Repeated Measures to estimate treatment effect at 36 months, 6-month visit intervals, 500 participants per
group, 30% attrition, 5% «, and 80% power.
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Study A4 AIBL NA-ADNI J-ADNI ADCS-PI
(grouping) (Amyloid PET) (Amyloid PET) (PET/CSF) (Amyloid PET) (APOEz4) (CDR-G)
Component z, MMSE MMSE (6%) MMSE MMSE 3MSE 3MSE
Component z, FCSRT CVLT (55%) ADAS-Cog ADAS-Cog FCSRT FCSRT
CRIMEL 2 LM LM (35%) LM LM NYU NYU
Component z Digit Digit (5%) Digit Digit Digit Digit
6 using equal weights 33% 42% (year 2) 35% 48% 14%
6 using logistic regression weights 27%" + 54% 95% 15%

Table 1. External validation of weights optimized using AIBL. To explore optimized weighting of
the PACC, we fit AIBL data to a logistic model of A+ status with month 36 component change z-
scores as covariates. The regression coefficients from this model provide a weighting tuned to
discriminate AS+ status. The resulting weights are in bold and parentheses in the AIBL column, and
the resulting minimum detectable 6 is summarized in the bottom row.

* The minimum possible (numerically optimized) § was 25%, but this required weighting Digit Symbol
in the wrong direction.

T The logistic optimized PACC was not significantly different at any visit in ADNI, while the original
was significant only at year 2.
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Figure 3. Optimized composite weights across the cross-validation subsamples. Medians (dots)
and range (vertical lines) of the logistic-optimized (left) and minimum detectable é (right) by data set
(colors) across the 15 repeated cross-validation subsamples (see color legend in Figure 4).

DISCUSSION

Summary

» There is tradeoff between optimization and face validity such that optimization should only be considered if there is a convincing rationale.

+ Component weight optimization does not yield valid improvements in sensitivity of PACC to detect treatment effects. We did not explore item level
optimization, which would be even more costly to face validity.

* Both MMSE and Digit Symbol Substitution were consistently down-weighted by optimization. However, down-weighting them did not reliably improve
composite performance out-of-sample. MMSE has good face validity as a global assessment and has demonstrated sensitivity to preclinical decline
(Amieva, et al 2008). Digit Symbol Substitution has good face validity as a measure of executive function. We do not find adequate justification to omit
either the MMSE nor Digit Symbol Substitution from the PACC.

Limitations of external validation:
» ltis expensive to conduct additional validation studies.
» Existing data is never ideally matched with respect to the study populations or assessments.

Limitations of cross-validation:
» Mere simulation of real-world out-of-sample replication.
» Sub-samples may not be of sufficient size to generate reliable weight estimates.
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Figure 4. Minimum detectable § attained out-of-sample. Medians (dots) and range (vertical lines)
of the minimum detectable § attained out-of-sample using each of the 3 indicated weighting methods.
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