
Simulation model for placebo group. Multivariate continuous data are simulated from a Bayesian joint mixed
effects model (JMM) trained on data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The ADNI PAD
population is defined by a diagnosis of Cognitively Normal (CN) or Significant Memory Concern (SMC) at baseline, and
florbetapir positron emission tomography (PET) standardized uptake value ratio (SUVR) above 1.11 or cerebrospinal
fluid CSF amyloid beta (Aβ) below 950.6 pg/ml. The CSF threshold of 950.6 pg/ml was selected to yield the same
proportion of PAD as the 1.11 SUVR threshold. We fit the model to the following 7 outcomes:

1. ADAS Delayed Word Recall (ADAS-DWR)
2. Logical Memory Paragraph Recall (LogMem)
3. Trail Making Test Part B (Trails B)
4. Mini-Mental State Examination (MMSE)
5. Category Fluency - Animals
6. Clinical Dementia Rating - Sum of Boxes (CDRSB)
7. Functional Assessment Questionnaire (FAQ)

The multivariate mixed-effects model is specified as
yijk = x′ijkβk +b0ik +b1iktijk +εijk

for subject i, time j, and outcome k; where βk are fixed-effect regression coefficients, b0ik and b1ik are the subject- and
outcome- specific random intercept and slope. The random effects are assumed to follow a multivariate Gaussian
distribution with mean vector 0 and variance-covariance matrix Σ with dimension 2p. The model with multivariate
random effects has the advantage of reflecting the dependency within subjects and among outcomes. The εijk∼N(0, σk

2)
are residual errors.

Prior to modelling, raw scores are transformed to quantiles, then to approximate z-scores using inverse Gaussian
distribution. Z-scores simulated from the fitted model are then back-transformed to the raw scale. Baseline covariates
included age and carriage of an apolipoportein E4 (APOEε4) allele. Subject- and outcome-specific random effects are
assumed to follow a multivariate Gaussian distribution. Progressors to MCI or dementia were modelled separately from
non-progressors. Bayesian estimation is performed via Markov Chain Monte Carlo (MCMC) sampling using the mvmer
function in R package Rstanarm.3

Random forest algorithm for MCI. In order to simulate a clinician’s diagnosis of MCI or dementia, we first use ADNI
data to learn an algorithm to approximate this decision. The random forest algorithm is an ensemble learning method
for classification and regression.4 In our application, clinician diagnosis of normal cognition versus MCI or dementia is
the binary outcome variable, and the seven continuous markers, age and education are the predictors. The model is
fitted using the R package randomForest. The fitted model is then applied to simulated continuous outcomes to predict
a clinician’s diagnosis.

Simulated clinical trials. We simulated total sample sizes of either N=1000 or N=1500 participants randomized to
either treatment or placebo in a 1:1 ratio. Visits were simulated every 6 months from 0 to 8 years. We simulated 1000
trials for each scenario. For the placebo group, no changes will be made to the JMM fit to ADNI. We simulate 24% of
subjects from the model fit to progressors (to match the progression rate observed in ADNI). For the treatment group,
we will impose large (40% improvement on rate of change over the control), moderate (30% improvement), small (20%
improvement) and null (same as the control) treatment effects on all 7 continuous assessments.

To simulate non-ignorable missing data, three dropout categories are considered: intolerability, inefficacy and missing
completed at random (MCAR). Participants having intolerability or inefficacy drop out from the study immediately after 6
and 12 months, respectively. For MCAR, we assume linear attrition rate of 5% per year for both the treatment and
placebo groups. The simulated dropout rates are described in Table 1.

In order to assess bias due to missing data, we simulate complete data for every subject. The complete data is
appropriately censored for the analysis of “observed” data, and left uncensored for analysis of the “complete” data.
Completers and MCAR dropouts are assumed to have the same longitudinal mean profile within each treatment arm.
Dropouts due to intolerability are simulated to have the expected benefit, on average, until dropout, followed by an
“unobserved” benefit that is diminished by a factor of 15%. Dropouts due to inefficacy are simulated to have no benefit.

We consider two outcome measure: (1) the 4-item modified Preclinical Alzheimer’s Cognitive Composite (PACC) or (2)
time-to-MIC or dementia as determined by random forest applied to all 7 simulated assessments. The four competing
clinical trial models are (1) Mixed Model of Repeated Measures (MMRM), (2) constrained Longitudinal Data Analysis-
linear (cLDA-linear) and (3) cLDA-quadratic for continuous PACC scores; and (4) Cox for time-to-progression, with two
baseline covariates: age at baseline and carriage of the APOEε4 allele. The Cox model will use all data observed out
to 8 years until the last subject reaches the final scheduled visit under the common close design. We assume a linear
enrollment rate such that enrollment is completed in 4 years and about half the subjects contribute “extra” common
close follow-up in the 4.5 to 8 year range to the Cox model. The MMRM, cLDA-linear and cLDA-quadratic only use data
up to last scheduled visit, i.e., from 0 to 4.5 years.

The efficacy estimates will be the difference between randomized groups in the intention-to-treat population in terms of
either: (1) Group difference in PACC at final study time point (MMRM and cLDA-linear); (2) Area between mean PACC
curves (cLDA-quadratic); or (3) Rate (hazard ratio) of progression to MCI/Dementia (Cox).
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Scenario Missing data rate

Group Efficacy Perceived inefficacy Intolerability Completely at random

Active Ineffective 15% 10% 5% per year

Active Effective 8% 10% 5% per year

Placebo Not applicable 15% 0% 5% per year
Table 1. Missing data patterns assumed in simulations. Participants experiencing intolerability are simulated to drop out at month six, and those perceiving 
inefficacy drop out at twelve months.
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Figure 4. Statistical power for MMRM, cLDA and Cox PH with sample sizes of N=1000 (left) and N=1500 (right). Solid lines indicate power estimates for data
observed after simulated non-ignorable missingness; and dashed lines indicate power that would be achieved with complete data (including observations that
would be unobserved in reality). The observed data shows greater power with fewer observations because the non-ignorable missingness induces a bias in favor
of the treatment.

Figure 3. Results of one simulated clinical trial with 20% treatment effect and N=1000 from (a) analysis of change from baseline using a categorical time MMRM of
the PACC; (b) a cLDA model of PACC with linear time trends; (c) a cLDA model of PACC with quadratic time effects; and (d) Kaplan-Meier curves comparing the
time-to-progression to MCI or dementia.

(A) MMRM of PACC (B) cLDA-linear of PACC

(C) cLDA-quadratic of PACC (D) Kaplan-Meier of time-to-MCI
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Figure 1. Fitted JMM subject-level predictions
for the 7 assessments. The model results in
reasonable predictions. The bold red lines are
LOESS smooths. The
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Figure 2. The progression rate in simulated data (red) was similar to that estimated in ADNI by Kaplan-Meier.

The models of PACC consistently provide at least twice the power of the Cox model even when the Cox model has the
benefit of considerably more follow-up under a common close design. Given this inefficiency, the time-to-progression
analysis should be avoided in PAD.

Some might still argue that the clinical meaningfulness of the time-to-progression is worth the cost of a larger, longer
trial. However, given that the random forest provided a purely algorithmic diagnosis with 93.81% out-of-bag accuracy
suggests that there is minimal additional value in the diagnosis. And again, while the progression outcome is more
qualitative than the PACC on the subject level, the group level result is still quantitative (e.g. a hazard ratio) and
requires additional interpretation to assign clinical meaning.

One might also argued that clinical diagnosis cannot be adequately modelled algorithmically using trial data. That is,
clinical assessment and diagnosis by a trial site clinician may consider information not captured by trial measures. But
the cognitive, clinical and functional assessments are designed to capture the relevant information, and clinicians
generally rely on similar information obtained through less structured assessments. It seems questionable that a site
clinician will gain much reliable information beyond the assessments; indeed, this is the justification for central expert
panel adjudication of site diagnoses.

The Bayesian joint models are well-suited to simulating plausible panels of correlated longitudinal data necessary to
compare clinical trial designs. This approach could be useful in many other contexts where one is interested in a fair
comparison of different outcome measures, different combinations of correlated outcomes, or different models of
treatment effect. Simulations which ignore the correlations among important outcomes will likely not provide reliable
comparisons.

All of the models considered were susceptible to bias induced by a plausible missing data pattern. However, this bias
seemed to only affect scenarios with an effective treatment and did not inflate Type I error under the null hypothesis.
The Mehrotra method shows promise in correcting this bias, but it might overcorrect in favor of placebo, and it would be
impossible to detect this over-correction in practice. Given that Type I error is not inflated, we are inclined to suggest no
change to the status quo approach in which the primary analysis is based on likelihood-based methods which are
robust to MAR, and applying appropriate MNAR sensitivity analyses such as tipping point analyses.

METHODS (continued)
Missing Data Bias Adjustment. Mehrotra, et al.5 proposed a method for a bias adjustment to account for data missing
not at random. They proposed a formula-based two-step approach which assumes the endpoint distribution for the
treatment group to be a mixture of distributions (one each for the completers and dropouts). Separate models are fit to
(1) all placebo, (2) all active, (3) active completers, and (4) active dropout groups. The model fit to all active, under the
assumption of data Missing at Random (MAR), is adjusted using estimates from the models fit to subgroups. We apply
their method to MMRM and cLDA models in the simulation study.

RESULTS (continued)

Figure 1 shows the subject-level JMM fits over time for the seven modeled assessments. The random forest found
CDRSB, LogMem and FAQ to be three most important assessments for determining the diagnosis of MCI. The model
had a 6.19% out-of-bag error rate and 93.81% out-of-bag accuracy rate. Figure 2 shows the Kaplan-Meier estimated
progression rate of the ADNI-PAD population (black solid line) along with the progression rate from one large simulated
placebo group (red dots). The simulated progression yields closer concordance with the Kaplan-Meier estimates at the
earlier stage. Although we observe discrepancies between the two lines in the middle and the right tail, the red line still
lies within the 95% confidence intervals. Both the subject-level trajectories and the progression rate illustrate that the
simulated data plausibly mimics the observed data.

Figure 3 shows the results of one simulated clinical trial with a 20% treatment effect and sample size N=1000. The
figure illustrates the group trends obtained by fitting the four different models. Simulated power and Type I error are
summarized in Figure 4. Under the null hypothesis (no treatment effect), the MMRM exhibits smaller than expected
Type I error (about 2%), whereas the other models are closer to the expect 5% error rate. The linear cLDA model
consistently exhibits the greatest power of the four models, followed by quadratic cLDA, MMRM, and Cox model. For
example, with a trial of size N=1000 subjects of a drug with a 30% treatment effect, the simulated power is 96% for
cLDA-linear, 86% for cLDA-quadratic, 79% for MMRM, and 33% for Cox model. In comparing analysis of complete
versus observed data, it seems the missing data does not increase Type I error, but it does inflate power. This
suggests the bias is only an issue with an effective drug, in which case the effectiveness might appear inflated.

Table 2 further summarizes the bias induced by the missing data pattern. The table summarize the bias as a percent of
effect seen in complete data. The Cox model seems to have smaller bias with 20% treatment effect, but as the
treatment grows, the bias is comparable for all models. The method proposed by Mehrotra, et al. successfully shrinks
the magnitude of bias, e.g. from 27% in favor of treatment to -4.4% in favor of placebo for MMRM with 20% treatment
effect. The method appears to overcorrect the bias in favor of placebo in these simulations.

Sample
size Analysis Method 

20% Effect 30% Effect 40% Effect

Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3) 

1000 MMRM 27.1 (7.0, 52.3) 29.9 (16.3, 46.8) 29.6 (19.4, 42.3)

cLDA1 29.6 (12.4, 51.9) 29.8 (18.9, 43.7) 29.7 (21.4, 39.7)

cLDA2 24.5 (5.5, 50.2) 26.5 (13.7, 42.6) 26.2 (16.5, 37.9)

CoxPH 17.4 (-16.1, 55.0) 22.2 (-4.5, 52.7) 25.5 (5.2, 50.4)

MMRM-Mehrotra -4.4 (-23.2, 20.6) -2.9 (-15.9, 13.3) -2.8 (-12.7, 8.6)

cLDA-L-Mehrotra -1.7 (-16.2, 15.4) -1.7 (-11.3, 9.1) -2.0 (-9.2, 5.7)

cLDA-Q-Mehrotra -6.0 (-21.2, 15.9) -4.5 (-15.5, 9.4) -4.7 (-13.0, 5.2)

1500 MMRM 27.5 (9.7, 52.8) 28.2 (16.6, 43.3) 28.3 (19.6, 39.3)

cLDA1 29.1 (15.7, 48.4) 29.2 (19.9, 40.9) 29.3 (22.2, 37.8)

cLDA2 24.8 (8.8, 45.6) 25.4 (15.2, 38.2) 25.5 (17.8, 34.6)

CoxPH 18.0 (-8.2, 46.9) 22.7 (3, 46.3) 24.3 (8.6, 44.6)

MMRM-Mehrotra -3.0 (-19.4, 17.6) -3.0 (-13.8, 9.7) -3.1 (-11.2, 6.2)

cLDA-L-Mehrotra -2.1 (-13.5, 11.4) -2.3 (-9.8, 5.7) -2.4 (-7.9, 3.5)

cLDA-Q-Mehrotra -6.1 (-18.8, 12.7) -5.5 (-13.9, 5.7) -5.5 (-11.5, 2.8)
Table 2. Bias induced by missing data as a percentage of the effect estimated from complete data. Median and interquartile range are based on 1000 simulated trials 
for the given sample size, treatment effect, and analysis method.
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