
Disclosures
M. Donohue has served on scientific advisory boards for Biogen, Eli Lilly, and Neurotrack; and has
consulted for Roche. His spouse is a full-time employee of Janssen.

This talk will discuss alternative analysis approaches for the A4 study, but no decisions have been made
regarding any changes to the analysis plan. The opinions and interpretations expressed are those of M.
Donohue.
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Alternatives to MMRM for Preclinical AD Trials
The Mixed Model for Repeated Measures [MMRM; Mallinckrodt, Clark, and David (2001) @] is the most
commonly used approach for assessing treatment effects in Alzheimer’s clinical trials.

An alternative nonlinear Disease Progression Model (DPM) which assumes the ratio of group means is
fixed over time was proposed for DIAN-TU [e.g. Wang, Berry, Xiong, Hassenstab, Quintana, McDade,
Delmar, Vestrucci, Sethuraman, Bateman, and others (2018)].

We assess alternative linear, nonlinear, and generalized additive models for Preclinical Alzheimer’s
clinical trials like the A4 Study (Sperling, Rentz, Johnson, Karlawish, Donohue, Salmon, and Aisen, 2014)
with

real ADNI data and

simulated A4 data.

We also simulate the impact of variable lengths of participant hiatus in treatment and follow-up in A4 due
to the COVID-19 pandemic.
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MMRM:

Group 1 mean at : 

Group 2 mean at : 

 (  visits)

MMRM �t to ADNI cognitively normal amyloid pos. vs neg.

ti βi

ti γi

i = 1, … , m m
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MMRM assumptions and �tting in R

where:

 is vector of observations (one for each visit) for individual 
 is matrix of fixed effect covariates for subject 

 is vector of fixed effects to be estimated
 vector of correlated residuals for subject 

Fit in R, using nlme::gls:

gls(pacc.ch ~ pacc.bl.c + age.c + edu.c + apoe4 + suvr.c + # bl covs
  MONTH + active:MONTH,         # mean over time (MONTH categorical)
  correlation = corSymm(form = ~ visNo | id), # general correlation
  weights = varIdent(form = ~ 1 | wk))        # heterogeneous variance

Yi = Xiβ + ϵi,

Yi i = 1, … , n
Xi i
β
ϵi ∼ N(0, Σ) i
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DPM:

Group 1 mean at : 

Group 2 mean at : 

 (  visits)

Assumes:

where , disease rate
ratio, is constant over
time

Disease Progression Model (DPM) �t to ADNI

ti βi

ti

βi × θ

i = 1, … , m m

= θ
Group 1 mean at t

Group 2 mean at t

θ
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DPM assumptions and �tting in R

where:

 is vector of observations (change from baseline at each visit) for individual 
 are covariates for subject 

 is fixed effect parameter vector for baseline covariates
 is fixed effect parameter for placebo group temporal mean trend
 is multiplicative fixed effect parameter for relative effect of treatment

 is vector of random effects

Yi = Xiβ + (Ziγ)(1 + activeiθ) + Wibi + ϵi,

Yi i = 1, … , n
Xi, Zi, Wi i
β
γ
θ
bi ∼ N(0, Σ)

7 / 29

DPM assumptions and �tting in R
Fit in R, using nlme::nlme:

nlme(pacc ~ my_nonlinear_function(...), ...)

my_nonlinear_function <- function(active,
  theta,
  beta_m0, beta_m12, beta_m24, beta_m36, beta_m48,
  beta_age, beta_edu,
  M, age, edu)
{
  (I(M==0) * beta_m0 + I(M==12) * beta_m12 + I(M==24) * beta_m24 + 
   I(M==36) * beta_m36 + I(M==48) * beta_m48) * (1 + theta*active) +
  age*beta_age + edu*beta_edu
}
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Quadratic time model:

Group 1 mean at : 

Group 2 mean at : 

 (  visits)

Quadratic time model �t to ADNI amyloid positive vs negative

t
β0 + tβ1 + t2β2

t
γ0 + tγ1 + t2γ2

i = 1, … , m m
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Quadratic time model assumptions and �tting in R

where:

 is vector of observations (one for each visit) for individual 
 is matrix of fixed effect covariates for subject 

 is vector of fixed effects to be estimated
 vector of correlated residuals for subject 

Fit in R, using nlme::gls:

gls(pacc ~  age.c + edu.c + apoe4 + suvr.c +  # bl covs
    (months + I(months^2)) +                  # mean over time
    (months + I(months^2)):active,            # (months continuous)
  correlation = corSymm(form = ~ visNo | id), # general correlation
  weights = varIdent(form = ~ 1 | wk))        # heterogeneous variance

Yi = Xiβ + ϵi,

Yi i = 1, … , n
Xi i
β
ϵi ∼ N(0, Σ) i
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Hybrid model:

Group 1 mean at : 

Group 2 mean at : 

 (  visits)

Hybrid: Categorical + Quadratic time model �t to ADNI

ti βi

ti

βi + γ0 + tiγ1 + t2
i
γ2

i = 1, … , m m
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Natural Cubic Spline
(Schoenberg, 1968):

Group 1 mean at : 

Group 2 mean at : 

 and  are two
smooth functions

cubic basis functions

natural'' implies
second derivatives
are zero at
boundaries

Natural Cubic Spline �t to ADNI

t f1(t)

t f2(t)

f1 f2
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Natural Cubic Spline model assumptions and �tting in R

where:

 is vector of observations (one for each visit) for individual 
 is matrix of fixed effect covariates for subject 

(including terms from the basis expansion)

Fit in R, using nlme::gls:

gls(pacc ~  age.c + edu.c + apoe4 + suvr.c +   # bl covs
    ns(months, df=2) +        # natural spline for placebo (1 knot)
    ns(months, df=2):active + # natural spline for active (1 knot)
  correlation = corSymm(form = ~ visNo | id), # general correlation
  weights = varIdent(form = ~ 1 | visNo))     # heterogeneous variance

Yi = Xiβ + ϵi,

Yi i = 1, … , n
Xi i
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GAMM:

Group 1 mean at : 

Group 2 mean at : 

 and  are two
smooth functions

Thin plate regression
spline

Smoothness penalty
tuned by Generalized
Cross Validation
(Wood, 2017)

Generalized Additive Mixed Model (GAMM) �t to ADNI

t f1(t)

t f2(t)

f1 f2
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GAMM assumptions and �tting in R (Wood, 2017)

where:

 is vector of observations (one for each visit) for individual 
 are fixed effect covariates for subject 

 is a smooth semiparametric function to be estimated

Fit in R, using mgcv::gamm:

gamm(pacc ~ age.c + edu.c + apoe4 + suvr.c +  # bl covs
  s(months) + s(months, by=active, pc=0),
  correlation = corSymm(form = ~ visNo | id), # general correlation
  weights = varIdent(form = ~ 1 | visNo))     # heterogeneous variance

s(months, by=active, pc=0) provides constraint such that f(0)=0.

Yi = Xiβ + f(Zi) + ϵi,

Yi i = 1, … , n
Xi, Zi i
f

15 / 29

AIC for each model �t to ADNI

All models fit with random intercept and slope

Similar order with other correlation structures (when supported)
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Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Trial:Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Trial:

Simulated Impact of COVID-19 HiatusSimulated Impact of COVID-19 Hiatus
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Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Trial
A4 is an ongoing randomized trial in a Preclinical AD population (approx 1150 randomized).

Double-blind period is 4.5 years; monthly infusions; biannual cognitive testing.

In March 2020, infusions and cognitive testing were paused for most A4 participants due to COVID-19.

Participants have been returning to their sites and will be able to receive all of the originally planned
monthly doses after their "hiatus".
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A4 COVID-19 Hiatus Simulations
We simulated A4 trial data under 0, 3, 6, 9, and 12 month hiatus scenarios. The simulated scenarios assume:

All visits scheduled to occur after 2020-03-16 are shifted by 0, 3, 6, 9, or 12 months.
Placebo group simulated based on models fit to data from the Harvard Aging Brain Study (HABS).

Fixed effects included age, APOE, amyloid PET SUVR, PACC version
Treatment group trajectories are simulated with a piecewise linear or quadratic functions (next slide)
Attrition:

30% total attrition for no hiatus
32% total attrition for 3 month hiatus
34% total attrition for 6 month hiatus
36% total attrition for 9 month hiatus
38% total attrition for 12 month hiatus
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Assumed treatment e�ect over time

Under no hiatus, assumes average week 240 benefit of about 0.73 PACC points (34% of HABS amyloid
group difference).
Residual standard deviation at week 240 about 4.0. (PACC as sum of 4 -scores)Z
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Visit codes vs exam dates
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PACC test versions can get mixed together using exam dates
For example, with a 180 day hiatus, we might see these version counts:

24 48 72 96 120 144 168 192 216 240 264

A 0 1096 0 1016 0 811 142 513 364 190 592

B 1126 0 1055 0 984 0 680 248 354 480 0

With a categorical time analysis model, it would be awkward/difficult/impossible to control for version
effects.
With a continuous time analysis model, assuming a reasonable parametric mean structure over time, we
can simply add a fixed effect for version.
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MMRM vs GAMM �t to simulated A4 data
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MMRM vs GAMM (representing version e�ect)
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Power based on 1,000 simulated trials

GAMM is more powerful than MMRM and preserves power better with prolonged hiatus
25 / 29

Summary
AIC chooses MMRM as the most predictive model in ADNI data, followed by Natural Cubic Spline,
Quadratic, Hybrid, GAMM, and DPM approaches.

The COVID-19 hiatus introduces some novel modeling issues for A4, and in particular, challenges for the
MMRM framework.

Regression splines are an attractive continuous time approach, with

Flexible assumptions about group trends over time
Adjustment for test version effects

Under no hiatus, the GAMM approach with an ANOVA test for the main effect of treatment provides more
power (95-97%) compared to MMRM timepoint-specific contrasts (82-85%)

With a 90 day hiatus, the GAMM approach also provides more power (90-97%) compared to MMRM (59-
82%). Difference grows with longer hiatuses.
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Summary (continued)
Type I error was well controlled for the main effect tests derived from GAMM in these scenarios, but more
recent simulations have revealed some possible Type I error inflation.

Natural Cubic Splines:

Might provide more reliable Type I error control
But they require pre-specifying knots

Primary test?

Main effect or timepoint contrast?
Last timepoint? How do we ensure sufficient data?
Originally planned timepoint (week 240)?
Area between curves after week 240?

Investigation continues. No decision to change A4 analysis plan has been made.
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Thank you!
Collaborators:

Gopalan Sethuraman, Oliver Langford, Rema Raman, Wenyi Lin, Philip Insel, Wesley K Thompson,
Kathryn Papp, Reisa Sperling, Paul Aisen
Scott Andersen, Saptarshi Chatterjee, JonDavid Sparks, Michael Case, Thomas Jensen, Hong Liu-Seifert

ADNI, HABS, and A4 study teams, investigators, and participants.
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Alternatives to MMRM for Preclinical AD Trials
The Mixed Model for Repeated Measures [MMRM; Mallinckrodt, Clark, and David (2001) @] is the most
commonly used approach for assessing treatment effects in Alzheimer’s clinical trials.

An alternative nonlinear Disease Progression Model (DPM) which assumes the ratio of group means is
fixed over time was proposed for DIAN-TU [e.g. Wang, Berry, Xiong, Hassenstab, Quintana, McDade,
Delmar, Vestrucci, Sethuraman, Bateman, and others (2018)].

We assess alternative linear, nonlinear, and generalized additive models for Preclinical Alzheimer’s
clinical trials like the A4 Study (Sperling, Rentz, Johnson, Karlawish, Donohue, Salmon, and Aisen, 2014)
with

real ADNI data and

simulated A4 data.

We also simulate the impact of variable lengths of participant hiatus in treatment and follow-up in A4 due
to the COVID-19 pandemic.
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MMRM:

Group 1 mean at : 

Group 2 mean at : 

 (  visits)

MMRM �t to ADNI cognitively normal amyloid pos. vs neg.

ti βi

ti γi

i = 1, … , m m
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MMRM assumptions and �tting in R

where:

 is vector of observations (one for each visit) for individual 
 is matrix of fixed effect covariates for subject 

 is vector of fixed effects to be estimated
 vector of correlated residuals for subject 

Fit in R, using nlme::gls:

gls(pacc.ch ~ pacc.bl.c + age.c + edu.c + apoe4 + suvr.c + # bl covs
  MONTH + active:MONTH,         # mean over time (MONTH categorical)
  correlation = corSymm(form = ~ visNo | id), # general correlation
  weights = varIdent(form = ~ 1 | wk))        # heterogeneous variance

Yi = Xiβ + ϵi,

Yi i = 1, … , n
Xi i
β
ϵi ∼ N(0, Σ) i
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DPM:

Group 1 mean at : 

Group 2 mean at : 

 (  visits)

Assumes:

where , disease rate
ratio, is constant over
time

Disease Progression Model (DPM) �t to ADNI

ti βi

ti

βi × θ

i = 1, … , m m

= θ
Group 1 mean at t

Group 2 mean at t

θ
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DPM assumptions and �tting in R

where:

 is vector of observations (change from baseline at each visit) for individual 
 are covariates for subject 

 is fixed effect parameter vector for baseline covariates
 is fixed effect parameter for placebo group temporal mean trend
 is multiplicative fixed effect parameter for relative effect of treatment

 is vector of random effects

Yi = Xiβ + (Ziγ)(1 + activeiθ) + Wibi + ϵi,

Yi i = 1, … , n
Xi, Zi, Wi i
β
γ
θ
bi ∼ N(0, Σ)
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DPM assumptions and �tting in R
Fit in R, using nlme::nlme:

nlme(pacc ~ my_nonlinear_function(...), ...)

my_nonlinear_function <- function(active,
  theta,
  beta_m0, beta_m12, beta_m24, beta_m36, beta_m48,
  beta_age, beta_edu,
  M, age, edu)
{
  (I(M==0) * beta_m0 + I(M==12) * beta_m12 + I(M==24) * beta_m24 + 
   I(M==36) * beta_m36 + I(M==48) * beta_m48) * (1 + theta*active) +
  age*beta_age + edu*beta_edu
}
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Quadratic time model:

Group 1 mean at : 

Group 2 mean at : 

 (  visits)

Quadratic time model �t to ADNI amyloid positive vs negative

t
β0 + tβ1 + t2β2

t
γ0 + tγ1 + t2γ2

i = 1, … , m m
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Quadratic time model assumptions and �tting in R

where:

 is vector of observations (one for each visit) for individual 
 is matrix of fixed effect covariates for subject 

 is vector of fixed effects to be estimated
 vector of correlated residuals for subject 

Fit in R, using nlme::gls:

gls(pacc ~  age.c + edu.c + apoe4 + suvr.c +  # bl covs
    (months + I(months^2)) +                  # mean over time
    (months + I(months^2)):active,            # (months continuous)
  correlation = corSymm(form = ~ visNo | id), # general correlation
  weights = varIdent(form = ~ 1 | wk))        # heterogeneous variance

Yi = Xiβ + ϵi,

Yi i = 1, … , n
Xi i
β
ϵi ∼ N(0, Σ) i
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Hybrid model:

Group 1 mean at : 

Group 2 mean at : 

 (  visits)

Hybrid: Categorical + Quadratic time model �t to ADNI

ti βi

ti

βi + γ0 + tiγ1 + t2
i
γ2

i = 1, … , m m
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Natural Cubic Spline
(Schoenberg, 1968):

Group 1 mean at : 

Group 2 mean at : 

 and  are two
smooth functions

cubic basis functions

natural'' implies
second derivatives
are zero at
boundaries

Natural Cubic Spline �t to ADNI

t f1(t)

t f2(t)

f1 f2
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Natural Cubic Spline model assumptions and �tting in R

where:

 is vector of observations (one for each visit) for individual 
 is matrix of fixed effect covariates for subject 

(including terms from the basis expansion)

Fit in R, using nlme::gls:

gls(pacc ~  age.c + edu.c + apoe4 + suvr.c +   # bl covs
    ns(months, df=2) +        # natural spline for placebo (1 knot)
    ns(months, df=2):active + # natural spline for active (1 knot)
  correlation = corSymm(form = ~ visNo | id), # general correlation
  weights = varIdent(form = ~ 1 | visNo))     # heterogeneous variance

Yi = Xiβ + ϵi,

Yi i = 1, … , n
Xi i
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GAMM:

Group 1 mean at : 

Group 2 mean at : 

 and  are two
smooth functions

Thin plate regression
spline

Smoothness penalty
tuned by Generalized
Cross Validation
(Wood, 2017)

Generalized Additive Mixed Model (GAMM) �t to ADNI

t f1(t)

t f2(t)

f1 f2
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GAMM assumptions and �tting in R (Wood, 2017)

where:

 is vector of observations (one for each visit) for individual 
 are fixed effect covariates for subject 

 is a smooth semiparametric function to be estimated

Fit in R, using mgcv::gamm:

gamm(pacc ~ age.c + edu.c + apoe4 + suvr.c +  # bl covs
  s(months) + s(months, by=active, pc=0),
  correlation = corSymm(form = ~ visNo | id), # general correlation
  weights = varIdent(form = ~ 1 | visNo))     # heterogeneous variance

s(months, by=active, pc=0) provides constraint such that f(0)=0.

Yi = Xiβ + f(Zi) + ϵi,

Yi i = 1, … , n
Xi, Zi i
f
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AIC for each model �t to ADNI

All models fit with random intercept and slope

Similar order with other correlation structures (when supported)
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Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Trial:Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Trial:

Simulated Impact of COVID-19 HiatusSimulated Impact of COVID-19 Hiatus
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Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Trial
A4 is an ongoing randomized trial in a Preclinical AD population (approx 1150 randomized).

Double-blind period is 4.5 years; monthly infusions; biannual cognitive testing.

In March 2020, infusions and cognitive testing were paused for most A4 participants due to COVID-19.

Participants have been returning to their sites and will be able to receive all of the originally planned
monthly doses after their "hiatus".
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A4 COVID-19 Hiatus Simulations
We simulated A4 trial data under 0, 3, 6, 9, and 12 month hiatus scenarios. The simulated scenarios assume:

All visits scheduled to occur after 2020-03-16 are shifted by 0, 3, 6, 9, or 12 months.
Placebo group simulated based on models fit to data from the Harvard Aging Brain Study (HABS).

Fixed effects included age, APOE, amyloid PET SUVR, PACC version
Treatment group trajectories are simulated with a piecewise linear or quadratic functions (next slide)
Attrition:

30% total attrition for no hiatus
32% total attrition for 3 month hiatus
34% total attrition for 6 month hiatus
36% total attrition for 9 month hiatus
38% total attrition for 12 month hiatus
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Assumed treatment e�ect over time

Under no hiatus, assumes average week 240 benefit of about 0.73 PACC points (34% of HABS amyloid
group difference).
Residual standard deviation at week 240 about 4.0. (PACC as sum of 4 -scores)Z
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Visit codes vs exam dates
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PACC test versions can get mixed together using exam dates
For example, with a 180 day hiatus, we might see these version counts:

24 48 72 96 120 144 168 192 216 240 264

A 0 1096 0 1016 0 811 142 513 364 190 592

B 1126 0 1055 0 984 0 680 248 354 480 0

With a categorical time analysis model, it would be awkward/difficult/impossible to control for version
effects.
With a continuous time analysis model, assuming a reasonable parametric mean structure over time, we
can simply add a fixed effect for version.
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MMRM vs GAMM �t to simulated A4 data
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MMRM vs GAMM (representing version e�ect)
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Power based on 1,000 simulated trials

GAMM is more powerful than MMRM and preserves power better with prolonged hiatus
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Summary
AIC chooses MMRM as the most predictive model in ADNI data, followed by Natural Cubic Spline,
Quadratic, Hybrid, GAMM, and DPM approaches.

The COVID-19 hiatus introduces some novel modeling issues for A4, and in particular, challenges for the
MMRM framework.

Regression splines are an attractive continuous time approach, with

Flexible assumptions about group trends over time
Adjustment for test version effects

Under no hiatus, the GAMM approach with an ANOVA test for the main effect of treatment provides more
power (95-97%) compared to MMRM timepoint-specific contrasts (82-85%)

With a 90 day hiatus, the GAMM approach also provides more power (90-97%) compared to MMRM (59-
82%). Difference grows with longer hiatuses.
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Summary (continued)
Type I error was well controlled for the main effect tests derived from GAMM in these scenarios, but more
recent simulations have revealed some possible Type I error inflation.

Natural Cubic Splines:

Might provide more reliable Type I error control
But they require pre-specifying knots

Primary test?

Main effect or timepoint contrast?
Last timepoint? How do we ensure sufficient data?
Originally planned timepoint (week 240)?
Area between curves after week 240?

Investigation continues. No decision to change A4 analysis plan has been made.
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Thank you!
Collaborators:

Gopalan Sethuraman, Oliver Langford, Rema Raman, Wenyi Lin, Philip Insel, Wesley K Thompson,
Kathryn Papp, Reisa Sperling, Paul Aisen
Scott Andersen, Saptarshi Chatterjee, JonDavid Sparks, Michael Case, Thomas Jensen, Hong Liu-Seifert

ADNI, HABS, and A4 study teams, investigators, and participants.
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