Constrained vs unconstrained longitudinal data analysis

Constrained Longitudinal Data Analysis

Liang and Zeger (2000) describe a constrained longitudinal data analysis for comparing the time course of two randomized groups in which the model constains the two groups to share a common mean at baseline. Lu (2010) compared the power of this approach to a longitudinal analysis of covariance approach. We conduct a few simple simulation studies to interrogate the effect of the constraint on power to detect group differences. We do not simulate any missing data here.

Packages used

Pre-post design with two repeated measures simulated via random intercept model

Simulation settings

Analytic calculations

     Two-sample t test power calculation 

              n = 200
          delta = 0.4
             sd = 1.4
      sig.level = 0.05
          power = 0.81
    alternative = two.sided

NOTE: n is number in *each* group
     Power for longitudinal linear model with random slope (Edland, 2009) 

              n = 200
          delta = 0.4
         sig2.s = 0
         sig2.e = 1
      sig.level = 0.05
              t = 0, 1
          power = 0.81
    alternative = two.sided

 NOTE: n is number in *each* group 
     Longitudinal linear model slope power calculation (Diggle et al 2002, page 29) 

              n = 200
          delta = 0.4
         sigma2 = 1
      sig.level = 0.05
          power = 0.81
    alternative = two.sided

 NOTE: n is number in *each* group 

 R:
     [,1] [,2]
[1,]    2    1
[2,]    1    2

Set up data for simulation

centercenter

               Value Std.Error       DF t-value p-value    
(Intercept)   0.9945    0.1017 398.0000    9.78 < 2e-16 ***
trt          -0.1724    0.1438 398.0000   -1.20  0.2315    
time          0.4811    0.0975 398.0000    4.93 1.2e-06 ***
trt:time      0.4508    0.1379 398.0000    3.27  0.0012 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
               Value Std.Error       DF t-value p-value    
(Intercept)   0.9084    0.0719 399.0000   12.63 < 2e-16 ***
time          0.5206    0.0918 398.0000    5.67 2.7e-08 ***
time:trt      0.3717    0.1211 398.0000    3.07  0.0023 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

center

Simulate

Simulated power results (%)

Pr(p<0.05)
ttest.power 80.3
ttest.alpha 4.8
ancova1.power 90.2
ancova1.alpha 5.1
ancova2.power 90.2
ancova2.alpha 5.1
slopes.LDA.power 80.3
slopes.LDA.alpha 4.8
slopes.cLDA.power 90.3
slopes.cLDA.alpha 5.2
contrasts.LDA.power 80.6
contrasts.LDA.alpha 5.4

Four repeated measures simulated via random slope model

Simulation settings

Analytic calculations

     Power for longitudinal linear model with random slope (Edland, 2009) 

              n = 100
          delta = 0.43
         sig2.s = 1
         sig2.e = 1
      sig.level = 0.05
              t = 0, 1, 2, 3
          power = 0.8
    alternative = two.sided

 NOTE: n is number in *each* group 
     Longitudinal linear model slope power calculation (Diggle et al 2002, page 29) 

              n = 100
          delta = 0.43
         sigma2 = 1
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

 NOTE: n is number in *each* group 

 R:
     [,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    3    3    4
[3,]    1    3    6    7
[4,]    1    4    7   11

Set up data for simulation

center

center

              Value Std.Error      DF t-value p-value    
(Intercept)   0.949     0.134 598.000    7.09 3.7e-12 ***
trt           0.145     0.189 198.000    0.77  0.4447    
time          0.312     0.113 598.000    2.77  0.0058 ** 
trt:time      0.482     0.159 598.000    3.03  0.0026 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
               Value Std.Error       DF t-value p-value    
(Intercept)   1.0216    0.0945 598.0000   10.81 < 2e-16 ***
time          0.2904    0.1090 598.0000    2.66 0.00791 ** 
time:trt      0.5246    0.1489 598.0000    3.52 0.00046 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

center

Simulate

Simulated power results (%)

Pr(p<0.05)
slopes.LDA.power 79.7
slopes.LDA.alpha 5.0
slopes.cLDA.power 81.7
slopes.cLDA.alpha 5.1
contrasts.cts.LDA.power 81.1
contrasts.cts.LDA.alpha 6.0
contrasts.cat.LDA.power 81.1
contrasts.cat.LDA.alpha 5.5
contrasts.cat.cLDA.power 87.5
contrasts.cat.cLDA.alpha 10.9

Pre-post design simulated with fixed variance of pre-post difference and various pre-post correlations

Simulation settings

Analytic calculations

     Two-sample t test power calculation 

              n = 64
          delta = 0.015
             sd = 0.031
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

NOTE: n is number in *each* group

Set up data for simulation

Simulate

Simulated power results (%)

Pr(p<0.05)
0.2.ttest.power 68.0
0.2.ttest.alpha 4.9
0.2.ancova1.power 58.8
0.2.ancova1.alpha 4.7
0.2.ancova2.power 58.8
0.2.ancova2.alpha 4.7
0.2.slopes.LDA.power 68.0
0.2.slopes.LDA.alpha 4.9
0.2.slopes.cLDA.power 58.1
0.2.slopes.cLDA.alpha 4.8
0.2.contrasts.LDA.power 58.2
0.2.contrasts.LDA.alpha 4.6
0.5.ttest.power 67.5
0.5.ttest.alpha 5.2
0.5.ancova1.power 67.2
0.5.ancova1.alpha 5.0
0.5.ancova2.power 67.3
0.5.ancova2.alpha 5.0
0.5.slopes.LDA.power 67.4
0.5.slopes.LDA.alpha 5.2
0.5.slopes.cLDA.power 67.1
0.5.slopes.cLDA.alpha 5.1
0.5.contrasts.LDA.power 67.4
0.5.contrasts.LDA.alpha 5.0
0.7.ttest.power 67.7
0.7.ttest.alpha 5.0
0.7.ancova1.power 67.8
0.7.ancova1.alpha 5.0
0.7.ancova2.power 68.0
0.7.ancova2.alpha 5.1
0.7.slopes.LDA.power 67.6
0.7.slopes.LDA.alpha 5.0
0.7.slopes.cLDA.power 67.8
0.7.slopes.cLDA.alpha 5.0
0.7.contrasts.LDA.power 55.5
0.7.contrasts.LDA.alpha 5.1

So the t-test power is fixed at 80% (by design), the unconstrained LDA has nearly identical power to t-test; while ANCOVA and constrained LDA have similar power (always better power than t-test, but power decreases with increasing pre-post correlation). ANCOVA2 has similar power as ANCOVA1 (not surprising since no interaction between baseline outcome and group was simulated).

This confirms that the cLDA is preferred whenever we have two timepoints in a randomized study; just as ANCOVA is always preferred to t-test. Of course, cLDA has the added advantage of accommodating missing data.

comments powered by Disqus